

Original Article

Analysis of the Outcome of Distal Tibia Fracture Treated by Surgical Management with Distal Tibia Locking Plate in Tertiary Care Hospital, Ahmedabad

Janak Mistry¹, Parth Vinubhai Patel², Jainil Bharatbhai Patel³

Abstract

Background : Fracture through the epi-metaphyseal part at the distal end of tibia is very common. The outcome of such fractures depends on the proximity of the fracture site with the tibia plafond, type of fracture (whether comminute or simple), displacement, if any and injury to the surrounding soft tissue.

Materials and Methods : In this prospective study, conducted between March, 2021 to March, 2023, 30 Patients treated with Distal Tibia Plate Fixation were evaluated. All patients included in this study were operated with a minimal access approach to the distal tibia fractures and fixation was done using distal tibia anatomical plate.

Results : Operated patients were evaluated over a period of 1 year regularly at 6 weeks, 3 months, 6 months and 1 year. The patients were assessed for functional outcome on the basis of Olerud and Molander Functional Evaluation Score.

Discussion : The Functional Ankle score measured by Olerud and Molander Functional Evaluation Scoring in patients treated with distal tibia plating was 82% (Average of 60-90).

Conclusion : It is observed from this study that plate and screw fixation in cases with complex and comminuted fractures provides better alignment, reduction and fixation of such fractures.

Key words : Fracture, Distal Tibia Plate, Outcome, Internal Fixation.

Tibia is the largest of the two bones in the leg and is also the second strongest bone in the body after femur. The subcutaneous nature of the bone along with its weight bearing nature makes it more prone to fracture. One of the most common modes of trauma causing distal tibia fracture is road traffic accident or fall from height. The basic mechanism is either torsional or compressive forces acting on the bone. Treating patients with distal tibia epi-metaphyseal fractures with or without distal articular surface involvement is a surgical challenge¹⁻⁴.

With advances in technologies and better understanding of bio-mechanics of the human body, various modalities for surgical management of the distal tibia fractures are available. Traditional method of fixation being osteosynthesis plate fixation. Other methods include intramedullary nail, limited internal fixation with screws and/or Kirschner wire and in some

Editor's Comment :

- Distal tibia epi-metaphyseal fractures treated with open osteosynthesis plate and screw provides better alignment in more complex forms of fractures and should be considered as primary approach for better outcome.

cases external fixation of the bone can be performed. The most recent method being Minimally Invasive Plate Osteosynthesis (MIPO)⁵⁻⁹. Each technique has its own merits and demerits and there is no consensus as to which method is the best for treating distal tibia fractures^{2,10}.

Despite all the advancements, the outcome is not always excellent and complication rate is approximately 20-50%^{2,11,12}. The purpose of this study is to determine radiological and functional outcome of patients treated with MIPO/ORIF Plate Fixation (Figs 1&2).

MATERIALS AND METHODS

In this prospective study, conducted between March, 2021 to March, 2023, 30 Patients treated with Distal Tibia Plate Fixation were evaluated. Both Antero-

Department of Orthopaedics, GCS Medical College, Hospital and Research Centre, Ahmedabad, Gujarat 380025

¹MS, Associate Professor and Corresponding Author

²MBBS, 2nd Year Resident

³MBBS, 1st Year Resident

Received on : 09/09/2023

Accepted on : 12/10/2023

How to cite this article : Analysis of the Outcome of Distal Tibia Fracture Treated by Surgical Management with Distal Tibia Locking Plate in Tertiary Care Hospital, Ahmedabad. Mistry J, Patel PV, Patel JB. *J Indian Med Assoc* 2025; **123**(12): 16-9.

Fig 1 — Distal Tibia and Fibula Fracture X-Ray Lateral and AP view

Posterior and Lateral view X-Rays were analysed to determine the fracture site, type of fracture and the type of plate fixation for the best possible functional outcome. All patients included in this study were operated with a minimal access approach to the distal tibia fractures and fixation was done using distal tibia anatomical plate.

Minimal Access Approach to Distal Tibia :

The patient is placed in supine position with a sandbag under the ipsilateral buttocks to prevent the limb from rotating externally. The patella is kept facing anteriorly. The procedure is performed under tourniquet control. After the limb is exsanguinated, fibula is reduced first to achieve stabilization. Fibula fixation is done first

following which tibial fixation is done. A linear incision is placed at the most distal part of lateral malleolus. The fracture is reduced and fixed with appropriate size intramedullary nail. Alternatively, in few cases of comminuted fibula fracture, an incision was placed over the posterior border of the lateral malleolus and extended proximally. Final fixation of the fracture by fibular anatomical plate and 3.5mm screw. Medially the most distal part of medial malleolus being the anatomical landmark, a 3-5 cm size incision is placed halfway between the anterior and posterior borders of medial malleolus. Proximally the incision is placed over the subcutaneous surface of the tibia in similar manner. This approach has no internervous plane as this approach is along the subcutaneous surface of tibia and hence the periosteum can be seen once the initial incision is deepened. An Epi-Periosteal plane is created by passing a periosteum elevator. Once exposed, fracture is reduced with the help of traction and Kirschner wire. After achieving reduction, a 3.5mm Anteromedial plate is slid from distal incision proximally. Once desired placement is achieved, the plate is fixed with 3.5mm screws.

Inclusion Criteria :

Skeletally Mature patients with fracture involving distal 5cm of tibia (Based on AO Classification 43 Type A1, A2, A3 and 43 Type B1)² and Gustilo-Anderson Classification of Open Fracture Type 1 Fractures¹³.

Exclusion Criteria :

Skeletally Immature patients with fracture involving distal articular surface of tibia (Based on AO Classification 43 Type B2, B3 and Type C) and Gustilo-Anderson Classification of Open Fracture Type II and III.

Follow-up of all patients was done at regular pre-decided intervals of 6 weeks, 3 months, 6 months and 12 months (Tables 1 & 2).

RESULTS

In 30 patients operated for distal tibia fracture with osteosynthesis plate fixation. Common age group of the patients in the study was 20-60 years. Most common cause leading to fracture was road traffic accident (18 patients) followed by fall from height (8 patients) and sports injuries (2 patients). Concomitant Fibula Fracture was seen in 24 patients out of the 30 patients evaluated for this study (Tables 3 & 4).

Fig 2 — Postoperative X-Ray Distal Tibia Plating Lateral and AP View

Table 1 — AO Classification of Distal Tibia Fracture

AO Classification Type 43 :

A	A1	Metaphyseal Simple
	A2	Metaphyseal Wedge
	A3	Metaphyseal Complex
B	B1	Pure Split
	B2	Split Depression
	B3	Multi-fragmentary Depression
C	C1	Articular Simple, Metaphyseal Simple
	C2	Articular Simple, Metaphyseal Multi-fragmentary
	C3	Articular Multi-fragmentary

Table 2 — Gustilo-Anderson Classification of open fractures

Type I	Wound <1cm
Type II	Wound >10cm
Type III	A Adequate soft tissue coverage B Inadequate soft tissue coverage C Arterial injury requiring repair

The Average duration of Operation was 92 minutes (Range 60-120 minutes). Intra-operatively difficulties were encountered in achieving favourable reduction in 10 patients. Postoperative stay of the patients was uneventful. Patients were allowed partial weight bearing at an average time of 9.2 weeks (range 8-12 weeks) and full weight bearing was promoted at an average time of 16.8 weeks (range of 14-20 weeks). With the average time for union in operated patient being 24 weeks (Range 18-34 weeks), 3 patients developed non-union who were operated again and autologous bone graft from iliac crest was placed at the site of non-union. These patients showed union of distal tibia by 37 weeks. Superficial surgical site infection was present in 3 patients who were treated with antibiotics and regular dressing. Recovery of these patients was achieved by 28 weeks. No patient had implant failure among the patients evaluated in this study (Table 5).

Operated patients were evaluated over a period of 1 year regularly at 6 weeks, 3 months, 6 months and 1 year. The patients were assessed for functional outcome on the basis of Olerud and Molander Functional Evaluation Score. Based on the scoring system, most patients had good functional outcome.

DISCUSSION

Among the patients included in this case study, the average age of patients was 38. Most common cause of trauma leading to distal tibia fracture is road traffic accident (60% cases) followed by fall from height (30% cases). Fibula fracture was present in 60% cases and was treated with fibular plating depending on the fracture pattern. The reason behind treating both the fractures is that fixation of fibular provides rotational stability initially and also reduces the chances of developing any valgus or varus deformity¹⁴. Angular deformity was seen in 2 out of the 30 patients included in the study. Mean angulation was 1.1 degree in patients treated with plate and screw fixation. Another complication of fracture fixation is shortening of the fractured limb. Among the 30 patients treated with plate and screw fixation, 1 patient had postoperative shortening of 0.7cm.

The Functional Ankle score measured by Olerud and Molander Functional Evaluation Scoring in patients treated with distal tibia plating was 82% (Average of 60-90)

CONCLUSION :

Results of the study indicate that distal tibia epimetaphyseal fractures treated with open osteosynthesis plate and screw provides better alignment in more complex forms of fractures as it also allows employing additional procedures which may be needed for fracture fixation. With the advent of minimally invasive techniques there is fall in number of patients with wound complications and better bridging of comminuted and complex fractures. Patients operated with plate and screw fixation may require protracted weight bearing for 2-4 weeks after initial immobilization of 6-8 weeks. It is observed from this study that plate and screw fixation in cases with complex and comminuted fractures provides better alignment, reduction and fixation of such fractures

Table 3 — Mode of Trauma

Mode of Trauma	Number of Patients
Road Traffic Accident	18
Fall From Height	8
Sports Related Injuries	2
Slip and fall	1
Staircase Injury	1

Table 4 — Fracture pattern based on AO/OTA Type

AO/OTA Type	Number of Patients
43 Type A1	8
43 Type A2	6
43 Type A3	14
43 Type B1	2

Table 5 — Functional outcome of patients operated for Distal Tibia Plating (Olerud and Molander Functional Evaluation Score)

Function	Number of Patients
Excellent (91-100)	5
Good (61-90)	22
Fair (31-60)	3
Poor (0-30)	0

The number of cases in this study is not sufficient to make a broad and more definitive conclusion and further studies are required to make such statements.

Funding : None.

Conflict of Interest : None.

REFERENCES

- 1 Sirkin M, Sanders R — The treatment of Pilon fractures. *Orthop Clin North Am* 2001; **32**: 91-102.
- 2 Marsh JL, Saltzman CL — Ankle fractures. In: Bucholz RW, Heckman JD, Court-Brown CM (eds) Rockwood & Green's fractures in adults, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2147-2247 International Orthopaedics (SICOT) 2010; **34**: 583-8, 587.
- 3 Lau TW, Leung F, Chan CF, Chow SP — Wound complication of minimally invasive plate osteosynthesis in distal tibia fractures. *Int Orthop* 2008; **32**: 697-703.
- 4 Gao H, Zhang CQ, Luo CF, Zhou ZB, Zeng BF — Fractures of the distal tibia treated with polyaxial locking plating. *Clin Orthop Relat Res* 2009; **467**: 831-7.
- 5 Blauth M, Bastian L, Krettek C, Knop C, Evans S — Surgical options for the treatment of severe tibial pilon fractures: a study of three techniques. *J Orthop Trauma* 2001; **15**: 153-60.
- 6 Copin G, Nérot C — Recent fractures of the tibial Pilon in adult (Symposium du 66ème Congrès de la SOFCOT). *Rev Chir Orthop* 1992; **78**(Suppl-1): 3-83.
- 7 Leonard M, Magill P, Khayyat G — Minimally-invasive treatment of high velocity intra-articular fractures of the distal tibia. *Int Orthop* 2008; doi:10.1007/s00264-008-0629-5
- 8 Pugh KJ, Wolinsky PR, McAndrew MP, Johnson KD — Tibial Pilon fractures: a comparison of treatment methods. *J Trauma* 1000; **47**: 937-41.
- 9 Zelle BA, Bhandari M, Espiritu M, Koval KJ, Zlowodzki M — Treatment of distal tibia fractures without articular involvement: a systematic review of 1125 fractures. *J Orthop Trauma* 2006; **20**: 76-9.
- 10 Pollak AN, McCarthy ML, Bess RS, Agel J, Swiontkowski MF — Outcomes after treatment of high-energy tibial plafond fractures. *J Bone Joint Surg Am* 2003; **85-A**: 1893-1900.
- 11 McMullan MA, Smith SW, Boulas HJ, Schwartz HS — Complications encountered in the treatment of Pilon fractures. *J Orthop Trauma* 1992; **6**: 195-200.
- 12 Teeny SM, Wiss DA — Open reduction and internal fixation of tibial plafond fractures. Variables contributing to poor results and complications. *Clin Orthop Relat Res* 1993; **292**: 108-17.
- 13 Gustilo RB, Mendoza RM, Williams DN — Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. *J Trauma* 1984; **24**: 742-6.
- 14 Kumar A, Charlebois SJ, Cain EL — Effect of Fibular Plate Fixation On Rotational Stability of Simulated Distal fractures treated with intramedullary nailing, *J Bone J Surg Am* 2004; **85**: 604-8.

DISCLAIMER

Journal of the Indian Medical Association (JIMA)

The Journal of the Indian Medical Association (JIMA) (ISSN 0019-5847) is published monthly in English language from Editorial Offices at Sir Nil Ratan Sircar IMA House, 53, Sir Nilratan Sarkar Sarani, Kolkata-700014. Telephone No.: +91-33-22378092, (+919477493027); websites: <https://onlinejima.com> & www.ejima.in; Emails: jima1930@rediffmail.com; jimaeditorial@gmail.com.

The Journal of the Indian Medical Association (JIMA) is a publication of Indian Medical Association (IMA). Material printed in JIMA is copyrighted by the Journal of the Indian Medical Association (JIMA). All rights reserved. No part of this reprint may be reproduced, displayed, or transmitted in any form or by any means without prior written permission from the Editorial Board. Please contact the Permissions Department via email at jimaeditorial@gmail.com. For reprints please email: jimamkt@gmail.com.

JIMA does not hold itself responsible for statements made by any contributor. Statements or opinions expressed in JIMA reflect the views of the author(s) and not the official policy of the Indian Medical Association unless so stated. JIMA reprints are not intended as the sole source of clinical information on this topic. Readers are advised to search the JIMA Web site at <https://onlinejima.com> and other medical sources for relevant clinical information on this topic. Reprints of articles published in JIMA are distributed only as free-standing educational material. They are not intended to endorse or promote any organization or its products or services.

— **Hony Editor**